Aging and Immunity: Challenges, Insights and Breakthrough Solutions

Abstract

As global life expectancy rises, the aging population faces increasing health challenges, with immunosenescence (the gradual decline in immune function) being a critical concern. This decline is driven by mechanisms such as thymic involution, reduced B-cell function, impaired antigen presentation and chronic low-grade inflammation (inflammaging). These factors increase susceptibility to infections, reduce vaccine efficacy and contribute to chronic inflammatory diseases in older adults.

This review explores mechanisms of immunosenescence and potential interventions, including thymic rejuvenation, stem cell therapies, immune-modulating diets and exercise and advancements in vaccine technologies (eg, adjuvant-enhanced and mRNA vaccines). Focus is placed on immunological strategies for aging individuals, particularly in the context of COVID-19.

Challenges in combating immunosenescence include variability in immune responses among older adults and safety concerns with therapies like checkpoint inhibitors. The complex mechanisms of immune aging, especially in T cells, remain poorly understood. Personalized medicine offers promising solutions with gene editing technologies potentially repairing immune cells. However, traditional strategies such as exercise and proper nutrition remain crucial.

Developing biomarkers to track immune aging will enable early detection and personalized treatments. Addressing ethical, cultural and social factors is vital for equitable access and public acceptance of anti-aging treatments. Ultimately, a multidisciplinary approach combining personalized medicine, preventive strategies and immune-modulating therapies will enhance immune resilience, improve disease outcomes and promote healthier aging for older populations.

  1. World Health Organization (WHO). Ageing and health. 2022 [cited: 2022 September 08]. Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
  2. McGough M, Claxton G, Amin K, Cox C. How do health expenditures vary across the population? Peterson-KFF Health System Tracker, KFF Health News. 2024 Jan 4: News Release.
  3. Chen J, Zhao M, Zhou R, Ou W, Yao P. How heavy is the medical expense burden among the older adults and what are the contributing factors? A literature review and problem-based analysis. Front Public Health [Internet]. 2023;11:1165381. Available from: http://dx.doi.org/10.3389/fpubh.2023.1165381 
  4. Jones CH, Dolsten M. Healthcare on the brink: navigating the challenges of an aging society in the United States. NPJ Aging [Internet]. 2024;10(1):22. Available from: http://dx.doi.org/10.1038/s41514-024-00148-2 
  5. Oh S-J, Lee JK, Shin OS. Aging and the immune system: The impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw [Internet]. 2019;19(6):e37. Available from: http://dx.doi.org/10.4110/in.2019.19.e37 
  6. Nikolich-Žugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol [Internet]. 2018;19(1):10–9. Available from: http://dx.doi.org/10.1038/s41590-017-0006-x 
  7. Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther [Internet]. 2023;8(1):200. Available from: http://dx.doi.org/10.1038/s41392-023-01451-2 
  8. Ajoolabady A, Pratico D, Tang D, Zhou S, Franceschi C, Ren J. Immunosenescence and inflammaging: Mechanisms and role in diseases. Ageing Res Rev [Internet]. 2024;101(102540):102540. Available from: http://dx.doi.org/10.1016/j.arr.2024.102540  
  9. Thomas R, Wang W, Su D-M. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing [Internet]. 2020;17(1):2. Available from: http://dx.doi.org/10.1186/s12979-020-0173-8 
  10. Lynch HE, Goldberg GL, Chidgey A, Van den Brink MRM, Boyd R, Sempowski GD. Thymic involution and immune reconstitution.  Trends Immunol. 2009 Jun 18;30(7):366–73. Available from: http://dx.doi.org/10.1016/j.it.2009.04.003 
  11. Qi C, Liu Q. Natural killer cells in aging and age-related diseases.  Neurobiol. Dis. 2023 Jul;183. Available from: http://dx.doi.org/10.1016/j.nbd.2023.106156 
  12. O’Hara AM, Shanahan F. The Gut Flora as a Forgotten Organ. EMBO Reports. 2006 Jul 1;7, 688-93. Available from: http://dx.doi.org/10.1038/sj.embor.7400731 
  13. Wong C, Goldstein DR.  Impact of aging on antigen presentation cell function of dendritic cells.  Curr Opin Immunol. 2013 Aug;25(4), 535-541.      Available from: https://dx.doi.org/10.1016/j.coi.2013.05.016 
  14. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, et al. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front Immunol [Internet]. 2017;8:1960. Available from: http://dx.doi.org/10.3389/fimmu.2017.01960 
  15. Omarjee L, Perrot F, Meilhac O, Mahe G, Bousquet G, Janin A. Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging (Albany NY) [Internet]. 2020;12(24):26263–78. Available from: http://dx.doi.org/10.18632/aging.202422 
  16. Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus degeneration and regeneration. Front Immunol [Internet]. 2021;12:706244. Available from: http://dx.doi.org/10.3389/fimmu.2021.706244
  17. Duggal NA. Reversing the immune ageing clock: lifestyle modifications and pharmacological interventions. Biogerontology [Internet]. 2018;19(6):481–96. Available from: http://dx.doi.org/10.1007/s10522-018-9771-7 
  18. Lin RJ, Elias HK, van den Brink MRM. Immune reconstitution in the aging host: Opportunities for mechanism-based therapy in allogeneic hematopoietic cell transplantation.  Front Immunol. 2021 Apr 18:12. Available from: https://doi.org/10.3389/fimmu.2021.674093 
  19. Stankiewicz LN, Rossi FMV, Zandstra PW. Rebuilding and rebooting immunity with stem cells. Cell stem cell [Internet]. 2024;31(5):597–616. Available from: http://dx.doi.org/10.1016/j.stem.2024.03.012 
  20. Hussen BM, Taheri M, Yashooa RK, Abdullah GH, Abdullah SR, Kheder RK, et al. Revolutionizing medicine: recent developments and future prospects in stem-cell therapy. Int J Surg [Internet]. 2024;110(12):8002–24. Available from: http://dx.doi.org/10.1097/JS9.0000000000002109
  21. Demsky I. CAR T-cells show promise against age-related diseases in mice. Memorial Sloan Kettering Cancer Center, In the News. 2024 Feb 1; News Release.
  22. Amor C, Fernández-Maestre I, Chowdhury S, Ho Y-J, Nadella S, Graham C, et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat Aging [Internet]. 2024;4(3):336–49. Available from: http://dx.doi.org/10.1038/s43587-023-00560-5
  23. Centers for Disease Control and Prevention. Vaccine-preventable adult diseases. CDC Website. 2024 Jun 14; Available from: https://www.cdc.gov/vaccines-adults/diseases/index.html 
  24. Talbird SE, La EM, Carrico J, Poston S, Poirrier J-E, DeMartino JK, et al. Impact of population aging on the burden of vaccine-preventable diseases among older adults in the United States. Hum Vaccin Immunother [Internet]. 2021;17(2):332–43. Available from: http://dx.doi.org/10.1080/21645515.2020.1780847 
  25. Lord JM. The effect of ageing of the immune system on vaccination responses. Hum Vaccin Immunother [Internet]. 2013;9(6):1364–7. Available from: http://dx.doi.org/10.4161/hv.24696 
  26. Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med [Internet]. 2008;205(3):711–23. Available from: http://dx.doi.org/10.1084/jem.20071140 
  27. Weinberger B, Herndler-Brandstetter D, Schwanninger A, Weiskopf D, Grubeck-Loebenstein B. Biology of immune responses to vaccines in elderly persons. Clin Infect Dis [Internet]. 2008;46(7):1078–84. Available from: http://dx.doi.org/10.1086/529197 
  28. Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing [Internet]. 2019 Sep 13;16(25):1-16.  Available from: http://dx.doi.org/10.1186/s12979-019-0164-9
  29. Haynes L, Swain SL. Why aging T cells fail: implications for vaccination. Immunity [Internet]. 2006;24(6):663–6. Available from: http://dx.doi.org/10.1016/j.immuni.2006.06.003 
  30. American Society of Microbiology. Understanding Immunological Memory. ASM Website. 2023 May 11. Available from: https://asm.org/articles/2023/may/understanding-immunological-memory
  31. Tregoning JS, Russell RF, Kinnear E. Adjuvanted influenza vaccines. Hum Vaccin Immunother [Internet]. 2018;14(3):550–64. Available from: http://dx.doi.org/10.1080/21645515.2017.1415684 
  32. Jung M, Kim H, Choi E, Shin M-K, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother [Internet]. 2024;20(1):2317439. Available from: http://dx.doi.org/10.1080/21645515.2024.2317439 
  33. Sim TC. Current insights into covid-19 vaccination. Journal of Medicine, University of Santo Tomas [Internet]. 2023;7(2):1252–8. Available from: http://dx.doi.org/10.35460/2546-1621.2023-0077 
  34. Haveri A, Solastie A, Ekström N, Österlund P, Nohynek H, Nieminen T, et al. Neutralizing antibodies to SARS-CoV-2 Omicron variant after third mRNA vaccination in health care workers and elderly subjects. Eur J Immunol [Internet]. 2022;52(5):816–24. Available from: http://dx.doi.org/10.1002/eji.202149785 
  35. Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, et al. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines [Internet]. 2024;9(1):77. Available from: http://dx.doi.org/10.1038/s41541-024-00874-4 
  36. Izikson R, Brune D, Bolduc J-S, Bourron P, Fournier M, Moore TM, et al. Safety and immunogenicity of a high-dose quadrivalent influenza vaccine administered concomitantly with a third dose of the mRNA-1273 SARS-CoV-2 vaccine in adults aged ≥65 years: a phase 2, randomised, open-label study. Lancet Respir Med [Internet]. 2022;10(4):392–402. Available from: http://dx.doi.org/10.1016/S2213-2600(21)00557-9 
  37. Xing M, Hu G, Wang X, Wang Y, He F, Dai W, et al. An intranasal combination vaccine induces systemic and mucosal immunity against COVID-19 and influenza. NPJ Vaccines [Internet]. 2024;9(1):64. Available from: http://dx.doi.org/10.1038/s41541-024-00857-5 
  38. Zhang Z, Shen Q, Chang H. Vaccines for COVID-19: A systematic review of immunogenicity, current development, and future prospects. Front Immunol. 2022 Apr 26;22. http://dx.doi.org/10.3389/fimmu.2022.843928
  39. Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY, et al. Recent advancement in mRNA vaccine development and applications. Pharmaceutics [Internet]. 2023;15(7). Available from: http://dx.doi.org/10.3390/pharmaceutics15071972 
  40. Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita D, et al.  Nanoparticle-based delivery systems for vaccines. Vaccines. 2022 Nov 17;10(11):1946.  http://dx.doi.org/10.3390/vaccines10111946
  41. Saleh M, El-Moghazy A, Elgohary AH, Saber WIA, Helmy YA. Revolutionizing nanovaccines: A new era of immunization. Vaccines (Basel) [Internet]. 2025;13(2). Available from: http://dx.doi.org/10.3390/vaccines13020126 
  42. Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, et al. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects. Front Immunol [Internet]. 2024;15:1332939. Available from: http://dx.doi.org/10.3389/fimmu.2024.1332939
  43. Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines [Internet]. 2022;7(1):75. Available from: http://dx.doi.org/10.1038/s41541-022-00503-y
  44. Saito Y, Yamamoto S, Chikenji TS. Role of cellular senescence in inflammation and regeneration. Inflamm Regen [Internet]. 2024;44(1):28. Available from: http://dx.doi.org/10.1186/s41232-024-00342-5
  45. Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther [Internet]. 2022;7(1):391. Available from: http://dx.doi.org/10.1038/s41392-022-01251-0
  46. Lindstrom TM, Robinson WH. Rheumatoid arthritis: a role for immunosenescence?: Link between rheumatoid arthritis and aging. J Am Geriatr Soc [Internet]. 2010;58(8):1565–75. Available from: http://dx.doi.org/10.1111/j.1532-5415.2010.02965.x
  47. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov [Internet]. 2017;17(1):78. Available from: http://dx.doi.org/10.1038/nrd.2017.267
  48. Li Y, Liu Y, Tian Y, Gu H, Meng Q, Cui J, et al. The research progress of biologics in elderly-onset rheumatoid arthritis (EORA). Front Aging [Internet]. 2024;5:1511812. Available from: http://dx.doi.org/10.3389/fragi.2024.1511812
  49. Robbins PD, Jurk D, Khosla S, Kirkland JL, LeBrasseur NK, Milleret JD, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2020 Sep 30;61:779–803. Available from: http://dx.doi.org/10.1146/annurev-pharmtox-050120-105018
  50. Prasert S, Gavin S, Sawaek W. Oxidative stress and inflammation: the root causes of aging. Explor Med [Internet]. 2023;127–56. Available from: http://dx.doi.org/10.37349/emed.2023.00129
  51. Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother [Internet]. 2021;134(111119):111119. Available from: http://dx.doi.org/10.1016/j.biopha.2020.111119
  52. Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, et al. Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev [Internet]. 2014;14:81–101. Available from: http://dx.doi.org/10.1016/j.arr.2014.01.001
  53. Tenório MCDS, Graciliano NG, Moura FA, Oliveira ACM de, Goulart MOF. N-acetylcysteine (NAC): Impacts on human health. Antioxidants (Basel) [Internet]. 2021;10(6):967. Available from: http://dx.doi.org/10.3390/antiox10060967
  54. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol [Internet]. 2020;11:694. Available from: http://dx.doi.org/10.3389/fphys.2020.00694
  55. Selvarani R, Mohammed S, Richardson A. Effect of rapamycin on aging and age-related diseases-past and future. GeroScience [Internet]. 2021;43(3):1135–58. Available from: http://dx.doi.org/10.1007/s11357-020-00274-1
  56. Ursini F, Russo E, Pellino G, D’Angelo S, Chiaravalloti A, De Sarro G, et al. Metformin and autoimmunity: A “New Deal” of an old drug. Front Immunol [Internet]. 2018;9:1236. Available from: http://dx.doi.org/10.3389/fimmu.2018.01236
  57. Fries W, Basile G, Bellone F, Costantino G, Viola A. Efficacy and safety of biological therapies and JAK inhibitors in older patients with inflammatory bowel disease. Cells [Internet]. 2023;12(13):1722. Available from: http://dx.doi.org/10.3390/cells12131722
  58. Robbins PD, Jurk D, Khosla S, Kirkland JL, LeBrasseur NK, Miller JD, et al. Senolytic drugs: Reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol [Internet]. 2021;61(1):779–803. Available from: http://dx.doi.org/10.1146/annurev-pharmtox-050120-105018
  59. Pereira B, Correia FP, Alves IA, Costa M, Gameiro M, Martins AP, et al. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev [Internet]. 2024;95(102204):102204. Available from: http://dx.doi.org/10.1016/j.arr.2024.102204
  60. Koff WC, Williams MA. Covid-19 and immunity in aging populations - A new research agenda. N Engl J Med [Internet]. 2020;383(9):804–5. Available from:  http://dx.doi.org/10.1056/NEJMp2006761
  61. Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) [Internet]. 2020;12(10):9959–81. Available from: http://dx.doi.org/10.18632/aging.103344
  62. Taylor CA, Patel K, Patton ME, Reingold A, Kawasaki B, Meek J, et al. COVID-19-associated hospitalizations among U.S. adults aged ≥65 years - COVID-NET, 13 states, January-August 2023. MMWR Morb Mortal Wkly Rep [Internet]. 2023;72(40):1089–94. Available from: http://dx.doi.org/10.15585/mmwr.mm7240a3
  63. Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab [Internet]. 2023;35(1):36–55. Available from: http://dx.doi.org/10.1016/j.cmet.2022.11.005
  64. Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the ageing immune system. Nat Aging [Internet]. 2021;1(9):769–82. Available from: http://dx.doi.org/10.1038/s43587-021-00114-7
  65. Liang C-K, Lee W-J, Peng L-N, Meng L-C, Hsiao F-Y, Chen L-K. COVID-19 vaccines in older adults: Challenges in vaccine development and policy making. Clin Geriatr Med [Internet]. 2022;38(3):605–20. Available from: http://dx.doi.org/10.1016/j.cger.2022.03.006
  66. Evans JP, Zeng C, Carlin C, Lozanski G, Saif LJ, Oltz EM, et al. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci Transl Med [Internet]. 2022;14(637):eabn8057. Available from: http://dx.doi.org/10.1126/scitranslmed.abn8057
  67. Mattiuzzi C, Lippi G. Efficacy of COVID-19 vaccine booster doses in older people. Eur Geriatr Med [Internet]. 2022;13(1):275–8. Available from: http://dx.doi.org/10.1007/s41999-022-00615-7
  68. Zhang N, Li K, Liu Z, Nandakumar KS, Jiang S. A perspective on the roles of adjuvants in developing highly potent COVID-19 vaccines. Viruses [Internet]. 2022;14(2):387. Available from: http://dx.doi.org/10.3390/v14020387
  69. Kelley B, De Moor P, Douglas K, Renshaw T, Traviglia S. Monoclonal antibody therapies for COVID-19: lessons learned and implications for the development of future products. Curr Opin Biotechnol [Internet]. 2022;78(102798):102798. Available from: http://dx.doi.org/10.1016/j.copbio.2022.102798
  70. Cowan J, Amson A, Christofides A, Chagla Z. Monoclonal antibodies as COVID-19 prophylaxis therapy in immunocompromised patient populations. Int J Infect Dis [Internet]. 2023;134:228–38. Available from: http://dx.doi.org/10.1016/j.ijid.2023.06.021
  71. Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The role of micronutrients in support of the immune response against viral infections. Nutrients [Internet]. 2020;12(10):3198. Available from: http://dx.doi.org/10.3390/nu12103198
  72. Wu R, Jeffrey M, Johnson-Henry K, Green-Johnson J, Sherman P. Impact of prebiotics, probiotics and gut derived metabolites on host immunity. LymphoSign J [Internet]. 2016;(lymphosign-2016-0012). Available from: http://dx.doi.org/10.14785/lymphosign-2016-0012
  73. Abavisani M, Khoshrou A, Foroushan SK, Ebadpour N, Sahebkar A. Deciphering the gut microbiome: The revolution of artificial intelligence in microbiota analysis and intervention. Curr Res Biotechnol [Internet]. 2024;7(100211):100211. Available from: http://dx.doi.org/10.1016/j.crbiot.2024.100211
  74. Turner JE, Brum PC. Does regular exercise counter T cell immunosenescence reducing the risk of developing cancer and promoting successful treatment of malignancies? Oxid Med Cell Longev [Internet]. 2017;2017:4234765. Available from: http://dx.doi.org/10.1155/2017/4234765
  75. Kim S-D, Yeun Y-R. Effects of resistance training on C-reactive protein and inflammatory cytokines in elderly adults: A systematic review and meta-analysis of randomized controlled trials. Int J Environ Res Public Health [Internet]. 2022;19(6):3434. Available from: http://dx.doi.org/10.3390/ijerph19063434
  76. Hamar B, Coberley CR, Pope JE, Rula EY. Impact of a senior fitness program on measures of physical and emotional health and functioning. Popul Health Manag [Internet]. 2013;16(6):364–72. Available from: http://dx.doi.org/10.1089/pop.2012.0111
  77. Garbarino S, Lanteri P, Bragazzi NL, Magnavita N, Scoditti E. Role of sleep deprivation in immune-related disease risk and outcomes. Commun Biol [Internet]. 2021;4(1):1304. Available from: http://dx.doi.org/10.1038/s42003-021-02825-4
  78. Tatineny P, Shafi F, Gohar A, Bhat A. Sleep in the elderly. Mo Med. 2020;117(5):490–5. PMCID: PMC7723148 PMID: 33311760.
  79. Dzierzewski JM, Donovan EK, Kay DB, Sannes TS, Bradbrook KE. Sleep inconsistency and markers of inflammation. Front Neurol [Internet]. 2020;11:1042. Available from: http://dx.doi.org/10.3389/fneur.2020.01042
  80. Knezevic E, Nenic K, Milanovic V, Knezevic NN. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders. Cells [Internet]. 2023;12(23). Available from: http://dx.doi.org/10.3390/cells12232726
  81. Alotiby A. Immunology of stress: A review article. J Clin Med [Internet]. 2024;13(21):6394. Available from: http://dx.doi.org/10.3390/jcm13216394
  82. Black DS, Slavich GM. Mindfulness meditation and the immune system: a systematic review of randomized controlled trials. Ann N Y Acad Sci [Internet]. 2016;1373(1):13–24. Available from: http://dx.doi.org/10.1111/nyas.12998
  83. Estevao C. The role of yoga in inflammatory markers. Brain Behav Immun Health [Internet]. 2022;20(100421):100421. Available from: http://dx.doi.org/10.1016/j.bbih.2022.100421
  84. Oh B, Bae K, Lamoury G, Eade T, Boyle F, Corless B, et al. The effects of Tai Chi and Qigong on immune responses: A systematic review and meta-analysis. Medicines (Basel) [Internet]. 2020;7(7):39. Available from: http://dx.doi.org/10.3390/medicines7070039
  85. Leschak CJ, Eisenberger NI. Two distinct immune pathways linking social relationships with health: Inflammatory and antiviral processes. Psychosom Med [Internet]. 2019;81(8):711–9. Available from: http://dx.doi.org/10.1097/PSY.0000000000000685
  86. Gallagher S, Howard S, Muldoon OT, Whittaker AC. Social cohesion and loneliness are associated with the antibody response to COVID-19 vaccination. Brain Behav Immun [Internet]. 2022;103:179–85. Available from: http://dx.doi.org/10.1016/j.bbi.2022.04.017
  87. Cadar AN, Martin DE, Bartley JM. Targeting the hallmarks of aging to improve influenza vaccine responses in older adults. Immun Ageing [Internet]. 2023;20(1):23. Available from: http://dx.doi.org/10.1186/s12979-023-00348-6
  88. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers [Internet]. 2020;6(1):38. Available from: http://dx.doi.org/10.1038/s41572-020-0160-6
  89. Wang R, Xiong K, Wang Z, Wu D, Hu B, Ruan J, et al. Immunodiagnosis - the promise of personalized immunotherapy. Front Immunol [Internet]. 2023;14:1216901. Available from: http://dx.doi.org/10.3389/fimmu.2023.1216901
  90. Yu J, Li T, Zhu J. Gene therapy strategies targeting aging-related diseases. Aging Dis [Internet]. 2023;14(2):398–417. Available from: http://dx.doi.org/10.14336/AD.2022.00725
  91. Moqri M, Herzog C, Poganik JR, Biomarkers of Aging Consortium, Justice J, Belsky DW, et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell [Internet]. 2023;186(18):3758–75. Available from: http://dx.doi.org/10.1016/j.cell.2023.08.003
  92. Tao X, Zhu Z, Wang L, Li C, Sun L, Wang W, et al. Biomarkers of aging and relevant evaluation techniques: A comprehensive review. Aging Dis [Internet]. 2024;15(3):977–1005. Available from: http://dx.doi.org/10.14336/AD.2023.00808-1 
  93. Mackey T. An ethical assessment of anti-aging medicine. J Anti Aging Med [Internet]. 2003;6(3):187–204. Available from: http://dx.doi.org/10.1089/109454503322733045
  94. Occa A, Merritt AS, Leip A, Stapleton JL. What influences trust in and understanding of clinical trials? An analysis of information and communication technology use and online health behavior from the Health Information National Trends Survey. Clin Trials [Internet]. 2024;21(1):95–113. Available from: http://dx.doi.org/10.1177/17407745231204813
  95. van Leeuwen KM, van Loon MS, van Nes FA, Bosmans JE, de Vet HCW, Ket JCF, et al. What does quality of life mean to older adults? A thematic synthesis. PLoS One [Internet]. 2019;14(3):e0213263. Available from: http://dx.doi.org/10.1371/journal.pone.0213263

Articles related to the one you are viewing

There are currently no results to show, please try again later

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits use, share — copy and redistribute the material in any medium or format, adapt — remix, transform, and build upon the material, as long as you give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/.